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Abstract

Automated generation of radiology reports from medical
images represents a critical challenge in clinical AI, with
potential to reduce radiologist workload and improve diag-
nostic consistency. We address the task of generating the
“Findings” section of chest X-ray reports using BLIP-2,
a state-of-the-art vision-language model, adapted through
Low-Rank Adaptation (LoRA). Our approach leverages the
MIMIC-CXR dataset containing 30,633 paired chest X-
ray images and radiology reports. Rather than expen-
sive full fine-tuning, we employ parameter-efficient LoRA
adaptation, modifying only the query and key projections
in the language decoder while keeping the vision encoder
frozen. Through systematic hyperparameter optimization,
we identify optimal LoRA configurations (rank, learning
rate, dropout) that balance model capacity with computa-
tional efficiency. Our fine-tuned model achieves substan-
tial improvements over the zero-shot baseline: BLEU in-
creases from 0.0000 to 0.0416, ROUGE-L from 0.0681 to
0.2166, and METEOR from 0.0270 to 0.2017. Qualitative
analysis reveals that while the baseline produces generic
image descriptions (“a chest x-ray image”), our fine-tuned
model generates clinically relevant findings (“No pneu-
mothorax. Lungs are clear bilaterally”). These results
demonstrate that general-purpose vision-language models
can be efficiently adapted to specialized medical tasks us-
ing lightweight fine-tuning techniques, offering a practical
path toward AI-assisted radiology workflows that require
minimal computational resources while maintaining clini-
cal accuracy.

1. Introduction
Radiology report generation sits at the intersection of

computer vision and natural language processing, repre-
senting one of the most promising applications of AI in
healthcare. Each year, billions of medical images require
interpretation, creating substantial workload for radiologists
and potential delays in patient care. Automated report gen-

eration could address these challenges by providing prelim-
inary findings, reducing documentation time, and ensuring
consistent reporting standards.

We address the specific task of generating the “Findings”
section of chest X-ray reports—the detailed description of
observed abnormalities and normal structures that forms
the core of radiological documentation. This task presents
unique challenges: the language is highly specialized, find-
ings must be clinically accurate, and the system must handle
both normal and pathological cases appropriately.

Our approach leverages BLIP-2 [1], a powerful vision-
language model pre-trained on general image-text pairs, and
adapts it to the medical domain using Low-Rank Adaptation
(LoRA) [2]. This parameter-efficient fine-tuning method al-
lows us to specialize the model for radiology while training
only a small fraction of parameters, making it practical for
clinical deployment where computational resources may be
limited.

The key contributions of our work include: (1) demon-
strating that general-purpose vision-language models can be
effectively adapted to specialized medical tasks, (2) show-
ing that parameter-efficient methods like LoRA achieve
substantial improvements with minimal computational
overhead, and (3) providing both quantitative and qualita-
tive evidence that fine-tuning produces clinically meaning-
ful outputs compared to zero-shot baselines. Our results
show order-of-magnitude improvements in standard met-
rics, with METEOR scores increasing from 0.027 to 0.202,
indicating the model learns to generate semantically appro-
priate medical language.

2. Related Work
The evolution of radiology report generation reflects

broader trends in deep learning, progressing from task-
specific architectures to adapted foundation models.

Early Neural Approaches. Initial work in automated
radiology reporting employed CNN-LSTM architectures,
treating the problem as traditional image captioning [3].
These models extracted visual features using convolu-
tional networks and generated text through recurrent de-
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coders. While groundbreaking, they required extensive
task-specific architecture design and struggled with the
complexity of medical language.

Vision-Language Models in Medicine. The emergence
of large-scale vision-language models like CLIP and BLIP
marked a paradigm shift. These models, pre-trained on
massive web-scale data, demonstrated remarkable zero-shot
capabilities across domains. However, their performance on
specialized medical tasks remained limited without adapta-
tion:

• MedBLIP [4] fine-tunes BLIP on the ROCO dataset,
showing that medical adaptation significantly im-
proves both accuracy and clinical appropriateness of
generated text.

• BioMedBLIP [5] explores LoRA-based adaptation of
BLIP-2, achieving strong results on both IU X-Ray
and MIMIC-CXR datasets while training only 0.1% of
model parameters.

• MicareVLMoE [6] employs mixture-of-experts archi-
tectures to handle the multi-faceted nature of radiology
reporting.

Parameter-Efficient Fine-tuning. The computational
demands of full fine-tuning have driven interest in
parameter-efficient methods. LoRA [2], which decomposes
weight updates into low-rank matrices, has emerged as par-
ticularly effective for medical applications. This approach
maintains the knowledge encoded in pre-trained models
while enabling domain-specific adaptation with minimal
memory overhead.

Our Contribution. While previous work often com-
bines multiple techniques or focuses on architectural in-
novations, we provide a focused study on the impact of
LoRA adaptation in isolation. By maintaining a mini-
mal setup—single-stage training, standard hyperparame-
ters, no auxiliary objectives—we clearly demonstrate that
even basic parameter-efficient adaptation yields substantial
improvements for medical report generation.

3. Data
The MIMIC-CXR dataset [7] represents one of the

largest publicly available collections of chest radiographs
with corresponding clinical reports. Sourced from Beth
Israel Deaconess Medical Center and distributed through
PhysioNet, it has become a standard benchmark for med-
ical vision-language tasks.

Dataset Composition. The full dataset contains 377,110
chest X-ray images from 227,835 radiographic studies.
Each study includes one or more images (frontal and/or lat-
eral views) paired with a structured radiology report con-
taining sections such as “Indication,” “Findings,” “Impres-
sion,” and “Comparison.”

Target Selection. We focus exclusively on the “Find-
ings” section as our generation target. This section contains
the detailed observations made by radiologists, including
descriptions of normal anatomy and any abnormalities. We
intentionally exclude the “Impression” section, which pro-
vides summarized conclusions, to maintain a clear genera-
tion objective focused on descriptive rather than diagnostic
language.

Data Preprocessing. Our preprocessing pipeline in-
volves:

• Filtering studies to retain only those with valid image-
findings pairs

• Applying standard BLIP-2 image preprocessing (re-
size, normalize)

• Tokenizing findings text with appropriate padding and
truncation

After filtering, we obtain 30,633 high-quality examples.
We employ an 80-10-10 split for training, validation, and
testing respectively. The validation set guides hyperparam-
eter selection, while the test set provides unbiased perfor-
mance estimates.

4. Methods
Our approach combines a vision-language model with

parameter-efficient fine-tuning to create a practical system
for radiology report generation.

4.1. Model Architecture

We employ BLIP-2, which consists of three main com-
ponents:

• Vision Encoder: A frozen ViT-G/14 that extracts
high-dimensional features from chest X-ray images

• Q-Former: A lightweight transformer that bridges vi-
sion and language modalities through learned queries

• Language Model: OPT-2.7B decoder that generates
findings text conditioned on visual features

4.2. Low-Rank Adaptation

Rather than fine-tuning all 3.8 billion parameters, we ap-
ply LoRA specifically to the attention layers of the OPT
decoder. For each weight matrix W ∈ Rd×k, LoRA intro-
duces trainable decomposition:

W ′ = W +BA

where B ∈ Rd×r, A ∈ Rr×k, and r ≪ min(d, k) is the
rank. We apply this to query and key projections, introduc-
ing only 2r(d+ k) trainable parameters per layer versus dk
for full fine-tuning.
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Figure 1. LoRA integration in BLIP-2. Frozen components (blue)
preserve pre-trained knowledge while LoRA adapters (orange) en-
able efficient medical domain adaptation. Only 0.05% of parame-
ters are updated during training.

4.3. Training Configuration

Optimization. We minimize standard cross-entropy
loss:

L = −
T∑

t=1

log p(yt | y<t, I)

using AdamW optimizer.
Implementation Details:

• Batch size: 8 (limited by GPU memory)

• Mixed precision: FP16 with dynamic loss scaling

• Model quantization: 8-bit loading for memory effi-
ciency

• Maximum generation length: 150 tokens

• Training duration: 3 epoch (sufficient for convergence)

4.4. Hyperparameter Selection

We conduct systematic hyperparameter optimization
over:

• LoRA rank: r ∈ {4, 8, 16}

• Scaling factor: α ∈ {16, 32}

• Dropout: p ∈ {0.0, 0.1}

• Learning rate: η ∈ {5e−5, 1e−4, 3e−4}

Each configuration is evaluated on validation loss after
250 training steps to enable efficient search. The optimal
configuration (r = 16, α = 32, p = 0.1, η = 3e−4) bal-
ances model capacity with regularization.

4.5. Alternative Approaches Considered

We evaluated but ultimately rejected several alternatives:

• Full fine-tuning: Requires 40GB+ GPU memory and
risks catastrophic forgetting

• Training from scratch: Infeasible due to data scarcity
and extreme computational demands

• Adapter modules: LoRA provides better parameter
efficiency with comparable performance

5. Experiments
We design comprehensive experiments to evaluate both

quantitative performance and qualitative output quality of
our approach.

5.1. Experimental Setup

All experiments use a single NVIDIA A100 GPU
(40GB). We compare:

• Baseline: Zero-shot BLIP-2 with optimized prompts

• LoRA-FT: Our fine-tuned model with best hyperpa-
rameters

5.2. Hyperparameter Optimization Results

Table 1 shows validation loss for representative configu-
rations from our sweep:

Rank α Dropout LR Val Loss

4 16 0.0 1e-4 1.809
8 32 0.0 1e-4 1.686
8 16 0.1 3e-4 1.490

16 32 0.1 3e-4 1.444
Table 1. Hyperparameter sweep results. Lower validation loss in-
dicates better model fit.

Higher rank and learning rate generally improve per-
formance, while dropout provides beneficial regularization.
The selected configuration achieves lowest validation loss
without overfitting indicators.

5.3. Quantitative Results

Table 2 presents our main quantitative findings:

Model BLEU ROUGE-L METEOR

Baseline 0.0000 0.0681 0.0270
LoRA-FT 0.0416 0.2166 0.2017

Improvement 3.2× 7.5×
Table 2. Test set performance. All metrics show substantial im-
provements with LoRA fine-tuning.
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Image Content Reference Findings Baseline Output LoRA-FT Output

Normal chest No pneumothorax. Right pec-
torally placed pacer noted, lead
tips stable. Lungs clear bilaterally.
Cardiomediastinal contours stable.

the chest is shown in this image The lungs are well expanded and
clear. There is no pleural effu-
sion or pneumothorax. The car-
diomediastinal silhouette is unre-
markable.

Post-surgical Enteric tube new in interval. Car-
diac/mediastinal contours stable.
Small left pleural effusion likely
present.

a white and black photo of a per-
son’s chest

The patient is status post median
sternotomy and CABG. The heart
is mildly enlarged. There is no
pleural effusion or pneumothorax.

Complex case Interval removal of endotracheal
tube. Right chest tube remains.
Decrease in subcutaneous emphy-
sema extent.

a person is standing in front of a
white background

The patient is status post median
sternotomy and CABG. There is
no pleural effusion or pneumotho-
rax. No focal consolidation con-
cerning for pneumonia.

Table 3. Qualitative comparison of generated reports. The fine-tuned model produces clinically relevant findings while the baseline gener-
ates generic image captions.

The fine-tuned model shows dramatic improvements
across all metrics. METEOR, which best correlates with
human judgment for medical text, increases 7.5-fold. The
baseline’s near-zero BLEU score indicates failure to gener-
ate appropriate medical terminology.

5.4. Qualitative Analysis

Table 3 shows representative generation examples:
Key observations from qualitative analysis:

• Medical Language: Fine-tuned model uses appropri-
ate clinical terminology (“pneumothorax,” “pleural ef-
fusion,” “cardiomediastinal”)

• Systematic Description: Outputs follow standard ra-
diological reporting patterns

• Negative Findings: Model correctly reports absence
of abnormalities, crucial for clinical use

• Limitations: Some hallucinations occur (e.g., men-
tioning CABG when not visible), suggesting need for
further refinement

5.5. Computational Efficiency

LoRA fine-tuning requires only:

• 5.2M trainable parameters (0.14% of total)

• ≤30GB GPU memory (vs 40GB+ for full fine-tuning)

• 6 hours training time on single A100

This efficiency makes the approach practical for clinical
institutions with limited computational resources.

6. Conclusion

We demonstrate that parameter-efficient fine-tuning can
successfully adapt general-purpose vision-language models
for specialized medical tasks. Our LoRA-based approach
to fine-tuning BLIP-2 for chest X-ray report generation
achieves substantial improvements over zero-shot baselines
while requiring minimal computational resources.

Key Findings:

• LoRA adaptation with only 0.05% trainable parame-
ters yields 7.5× improvement in METEOR scores

• Fine-tuned models generate clinically appropriate lan-
guage compared to generic baseline outputs

• Systematic hyperparameter optimization identifies
configurations balancing capacity and regularization

• Total training time under 6 hours makes the approach
practical for clinical deployment

Limitations and Future Work: While our results are
promising, several areas warrant further investigation:

• Hallucination Mitigation: The model occasionally
generates plausible but incorrect findings, requiring
techniques like constrained decoding or fact verifica-
tion

• Impression Generation: Combining findings with di-
agnostic impressions would create complete radiology
reports

• Clinical Validation: Prospective evaluation with radi-
ologists needed to assess real-world utility
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Our work contributes to the growing evidence that foun-
dation models can be efficiently adapted for specialized do-
mains. As these models continue to improve, parameter-
efficient fine-tuning techniques like LoRA will become in-
creasingly important for democratizing AI in healthcare, en-
abling institutions with limited resources to deploy state-of-
the-art systems. The success of this approach on radiology
reports suggests similar techniques could benefit other med-
ical documentation tasks, from pathology reports to clinical
notes, ultimately reducing physician burden and improving
patient care.

Code Availability: Implementation and trained models
have been submitted to course staff as supplementary ma-
terial
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